Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis
نویسندگان
چکیده
The limitations of fluorine-18 fluorodeoxy-D-glucose (FDG) in detecting some cancers has prompted a longstanding search for other positron emission tomography (PET) tracers to complement the imaging of glycolysis in oncology, with much attention paid to lipogenesis based on observations that the production of various lipid and lipid-containing compounds is increased in most cancers. Radiolabeled analogs of choline and acetate have now been used as oncologic PET probes for over a decade, showing convincingly improved detection sensitivity over FDG for certain cancers. However, neither choline nor acetate have been thoroughly validated as lipogenic biomarkers, and while acetyl-CoA produced from acetate is used in de-novo lipogenesis to synthesize fatty acids, acetate is also consumed by various other synthetic and metabolic pathways, with recent experimental observations challenging the assumption that lipogenesis is its predominant role in all cancers. Since tumors detected by acetate PET are also frequently detected by choline PET, imaging of choline metabolism might serve as an alternative albeit indirect marker of lipogenesis, particularly if the fatty acids produced in cancer cells are mainly destined for membrane synthesis through incorporation into phosphatidylcholines. Aerobic glycolysis may or may not coincide with changes in lipid metabolism, resulting in combinatorial metabolic phenotypes that may have different prognostic or therapeutic implications. Consequently, PET imaging using dual metabolic tracers, in addition to being diagnostically superior to imaging with individual tracers, could eventually play a greater role in supporting precision medicine, as efforts to develop small-molecule metabolic pathway inhibitors are coming to fruition. To prepare for this advent, clinical and translational studies of metabolic PET tracers must go beyond simply estimating tracer diagnostic utility, and aim to uncover potential therapeutic avenues associated with these metabolic alterations.
منابع مشابه
Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملImaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography
Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...
متن کاملGold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice
Introduction: Light-driven cancer therapy strategies (e.g. photodynamic therapy and photothermal therapy) have undergone remarkable progress in recent years, but they still suffer from a serious drawback of limited penetration depth of light in tissue. As a non-invasive and non- ionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the bo...
متن کاملMolecular and Cellular Pathobiology F-Fluorodeoxy-glucose Positron Emission Tomography Marks MYC-Overexpressing Human Basal-Like Breast Cancers
In contrast to normal cells, cancer cells avidly take up glucose andmetabolize it to lactate even when oxygen is abundant, a phenomenon referred to as the Warburg effect. This fundamental alteration in glucose metabolism in cancer cells enables their specific detection by positron emission tomography (PET) following i.v. injection of the glucose analogue F-fluorodeoxy-glucose (FDG). However, th...
متن کاملPositron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis.
2-[(18)F]Fluoro-2-deoxy-d-glucose positron emission tomography ([(18)F]FDG PET) detection of the up-regulated glycolysis associated with malignant transformation is a noninvasive imaging technique used extensively in cancer diagnosis. Although striking similarities exist in glucose transport and metabolism between tumor cells and activated immune cells, the potential use of [(18)F]FDG PET for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2016